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Recap
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QPE is very useful for

0
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energy estimation

“* ground state preparatio
QPE cost ~ 1/¢ times Hamiltonian simulation cost for a unit time.

[ N

Better Hamiltonian simulation — Better time-evolution simulation, energy estimation,
ground state preparation, ...

Trotter-Suzuki: An efficient algorithm for Hamiltonian simulation on a quantum
computer —



Post-Trotter methods

Hamiltonian simulation from Trotter-Suzuki decomposition was first proposed by
Lloyd (1996).

In the 2010s, many new ideas appeared. They are interesting, because they come
with a better complexity bound than the Trotter-Suzuki method.
R/\

Strangely, many of these algorithms attempt to approximate e~ H! by a non-unitary
operation.

We will talk about one such method, known as the LCU(=linear combination of
unitaries).



Basic intuition

e What we want: |y) — |y') = e |y).

o What we do: |y)|0) = /p | v")|Success) ++/1 — p | Fail), where

| w") ~ |y’), by applying a linear combination of unitaries (LCU). [Childs and
Wiebe (2012)]

* Then we “boost” the success probability to 1.

'y
Nersve the ard  reststr [ oL P T

g 4 (’
Pol [, ' Fonll



Toy example 1

* Suppose we want to apply an arbitrary 2 X 2 matrix on a qubit, using a unitary
quantum circuit. What can we do?
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Toy example 2

—iHobt ~ ]

* Suppose we want to apply e — iHot, where H is a local Hamiltonian.

What can we do?
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Hamiltonian Simulation

* Suppose we want to apply e_iH‘SZ, where H is a local Hamiltonian and the norm of

Hoétis ~ 0. What can we do?
* A: Taylor expansion! [Berry, Childs, Cleve, Kohtari, and Somma (2014)]
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SELECT

* SELECT is an important subroutine used in modern quantum algorithms.
* Think of it as a “lookup table.”
* We will see this subroutine again, later in the course.
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PREPARE

* PREPARE is another important subroutine.

* In the context of the Hamiltonian simulation, this prepares the state that encodes
the coefficients of the Hamiltonian.

* We will see this subroutine again, later in the course.
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SELECT + PREPARE

* With these two, we can implement the desired operation.
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Why bother with this approach?

* In the Trotter-based Hamiltonian simulation, there is an inevitable O(poly(e ™))
scaling in the precision € . ——

* Using the LCU approach, one can get a sub-logarithmic scaling in 1/¢. [Berry, Childs,
Cleve, Kohtari, and Somma (2013, 2014)]  fo5(1/2) / foa ) (s

* This is especially important for quantum chemistry applications, because they tend to
require high-precision calculations.



Summary

In the Trotter-based Hamiltonian simulation, there is an inevitable O(poly(e ™))
scaling in the precision € .

Using the LCU approach, one can get a sub-logarithmic scaling in 1/¢. [Berry, Childs,
Cleve, Kohtari, and Somma (2013, 2014)]

Using SELECT + PREPARE, we can apply the desired unitary with a nonzero
probability.

However, we haven’t discussed how to boost this probability. That will come in the
next lecture.



